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Abstract

This report investigates the atmospheric flight mechanics of two projectiles connected by a
flexible tether. Both projectiles are individually modeled with six degrees of freedom. The
projectile aerodynamic model depends on angle of attack and Mach number and includes
unsteady roll, pitch, and yaw aerodynamic damping. The tether is split into a finite number, of
beads, with each bead possessing three translation degrees of freedom. Forces acting on the
beads include weight, line stiffness, line damping, and aerodynamic drag. The tether
aerodynamic drag force is dependent on the tether line angle of attack and Mach number. The
tether line deployment process is modeled with a single degree of freedom that permits unreeling
resistance to be incorporated. The effect of follower-to-lead projectile mass ratio and drag
coefficient ratio on system response are investigated.
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1. Introduction

Coupling two flight vehicles with a tether is by no means new, and a considerable bulk of
literature has amassed. For example, Tye and Han [1], Puig-Suari, Longuski, and Tragesser [2],
and No and Cochran [3] provide examples of tethers used for spacecraft applications. Phillips
[4] and Clifton et al. [5] address the application of tethers to atmospheric flight vehicles.
Djerassi and Viderman [6] investigated the motion of two bodies connected by a cable in
atmospheric free fall, and in particular, focused on a device to terminate a missile launch in
flight. Upon mission abort, 2 missile would be separated into a stable lead projectile and an
unstable follower projectile, with the purpose of drastically reducing range in a predictable
manner. The cable length was assumed short so that elastic collisions between the two bodies
occurred; this, in turn, induced relatively large yaw angle excursions and resulted in reduced

range.

The current effort develops a dynamic model of two projectiles connected by a flexible
tether. Each projectile is modeled as a rigid body with six degrees of freedom. Loads on each
projectile include weight and aerodynamic forces. The aerodynamic forces and moments are a
function of the attack angle of the axis of symmetry of the projectile and the Mach number at the
center of gravity. The aerodynamic expansion includes terms for high angle of attack flight as
well as terms for roll, pitch, and yaw unsteady aerodynamic damping. Motion of the two
projectiles is coupled through a tether line. The tether line is connected to each body with a
frictionless ball-and-socket joint at an arbitrary point. The tether line is modeled as an elastic
body, and is split into a finite number of beads; each bead is a point mass consisting of three
translation degrees of freedom. Forces that drive the motion of the beads include bead weight,
line spring force, line damping force, and aerodynamic drag. The tether line aerodynamic drag
force is a function of the attack angle of the tether line and the local Mach number of the tether
line element. The tether line deployment process is governed by a single degree of freedom

model, which allows tether reel resistance to be incorporated.




2. Projectile Mathematical Models

The mathematical model describing the motion of both projectiles allows for six rigid-body
degrees of freedom comprised of three body inertial position coordinates as well as three Euler
angle body attitudes. This mathematical model has been validated against spark range data for a
generic 25-mm, fin-stabilized sabot launched projectile [7]. Agreement between the model and

range data is excellent.

The equations presented below use the ground surface as an inertial reference frame. The
body frame is defined in the conventional manner [8], and the dynamic equations are written
with respect to this coordinate system. The translation and rotation kinematic and dynamic

equations for the lead projectile are given by equations (1-4) [8, 9].
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The follower projectile equations are identical in structure to the previous equations, but are

omitted here due to space limitations. The matrix [7;,,] represents the transformation from the

lead projectile body frame to the inertial frame. The matrix [S,] is the skew symmetric cross

product operator on the lead projectile body angular velocity components.

The total applied forces on the lead projectile is split into contributions due to the tether line

(T), weight (W), and body aerodynamics (A).

X, X7 X w X4
Yy 0=9Yr (Y (=9 Y o
Z, Zy Zw Zy,
where
Xiw —Sg,
Yiw ¢ =Wp18,,Co, (>and
ZLW C4,Ce,
X4 1 C;IEO + leéaza: + C:ﬁazﬁf
Y, = EpLVLZDL C}I;o + CI{‘BIBL . 5)
Z,, C;‘o + CéuaL

The total applied body moments contain contributions from the tether line (T), steady body
aerodynamics (SA), and unsteady body aerodynamics (UA).
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The projectiles considered in the subsequent analysis are spin-stabilized with relatively low roll.
rates, so Magnus effects were not included in the aerodynamic expansion. The steady body
aerodynamic moment is computed by a cross product between the distance vector from the
center of gravity to the center of pressure and the steady body aerodynamic force vector. The
unsteady body aerodynamic moment provides a damping source for projectile angular motion

and is given.
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The longitudinal and lateral aerodynamic angles of attack, &, and f,, are computed using the

following equations:

0, = tan—l[.w_L) and B, = tan(_] ®
U u, '

Air density is computed using the center of gravity position of the appropriate projectile in

concert with the standard atmosphere [10]. The aerodynamic coefficients are Mach number

dependent. Computationally, they are obtained by a table look-up scheme using linear

interpolation. Mach number is computed at the center of gravity of the respective projectile.
3. Tether Mathematical Model

As depicted in Figure 1, the tether is split into N, point mass elements and N, +1 line

elements. The motion of the point masses defines the motion of the tether line during deployment

and throughout its flight phases. Each tether bead is a point mass possessing three translation




Figure 1. Tether Bead Model Schematic.

degrees of freedom. Forces that drive the motion of the tether beads include tether bead weight,
adjacent tether line elastic forces, and tether bead aerodynamic forces. The tether bead equations
of motion that follow are the same structurally for all beads, so the formulas are shown only for

the ith tether bead. The equations are resolved in the inertial reference frame.
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In order to concisely express the different tether bead applied loads, the following tether bead

position and velocity matrices are introduced:
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Equations (10) and (11) contain N, +2 rows and three columns. The first and last row

elements contain the inertial position and velocity of the lead and follower projectile/tether

connection points.

3.1 Elastic Line Forces. The tether line forces are caused by the elasticity of the tether
material and are directed parallel to the cable line. Tether line flexibility generates resistive
stiffness and damping forces proportional to cable line extension and extension rate. Using the

bead position and velocity matrices, tether line element vectors can be formed.
A =R, ([1: Ny +1],)-R,([2: N, +2],:),and (12)

Ap =R.([1: N, +11,) - R, ([2: N, +2,5). (13)

The elastic tether line force, expressed in the inertial reference frame, is given by

equation (14).
Y, t= |—-*‘—|A, T (14)
The magnitude of the tether line force, F , is determined by equation (15).

i
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The second condition in equation (15) stipulates that when the tether line is slack, no force is
transmitted across the tether. As the tether stretches, the tether diameter decreases. The diameter
reduction, as a function of tether line extension, can be computed using Poisson’s ratio for the

tether material.
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3.2 Aerodynamic Line Forces. Aerodynamic forces on the tether line are generated by two
sources: skin friction and flat plate drag. The matrices P, and P,, defined by equations (17)

and (18), are used to compute tether aerodynamic forces.

P, =%(A, ([1: N, +11,)+A,([2: N, +2],5)), and a7

P, =-;-(A,([1:N,, +11,)+A,([2: N, +21,5)). (18)

Skin friction drag acts in a direction parallel to the tether line and is given by equation (19).

Dy, =~2 Vs, s |—2-n D, Cs . (19)

Aerodynamic loads on a particular tether bead are obtained using average tether bead
direction, diameter, and length from adjacent line elements. The skin friction drag coefficient is

a function of the local Mach number at the tether bead. In the inertial reference frame, the skin

friction drag exerted on a tether bead is given by equation (20).
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The local aerodynamic velocity along a tether bead element, v, , can be computed by a dot

product of the velocity vector with the normalized tether bead direction vector.




1)

The flat plate drag force exerted on the tether line element responds normally to the tether
bead element vector and is directed parallel to the aerodynamic velocity normal to the tether

bead direction vector.

1 ~ ~
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The flat plate velocity vector is computed by subtracting the skin friction drag velocity from
the total tether bead inertial velocity.

Vep = V1 [~ . (23)

The flat plate drag coefficient, Cp,, is a function of the Mach number at the tether bead. The

flat plate drag force expressed in the inertial reference frame is given by equation (24).
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4. Reel Dynamic Model

The tether reel is assumed to consist of a rotating reel acted on by an elastic line force, F,
that tends to pay out the tether line and a resistance force, F,, which opposes the unreeling

process. Rather than using reel rotation as a degree of freedom, it is more convenient to use




tether line pay-out as a dynamic variable. Equation (25) governs the dynamics of the tether line

unreeling process.
MmpSp + CpSp +kpsp =Fp. (25)

The tether reel damping and stiffness coefficients are scheduled as a function of tether
pay-out so that the unreeling process can be dynamically tailored. The tether pay-out dynamic
equation is a linear second order system with variable coefficients. With this general equation,

any reel geometry that exhibits second order behavior can be accommodated.

5. Flight Phases

Simulation of the complete mission involves four distinct flight phases. When initially
deployed from an aircraft, both projectiles are rigidly connected so the complete system moves
as a rigid body. Ata specific time after munition release, the follower projectile is unrestrained
from the lead projectile and the tether line commences its unreeling process. The third flight
phase is the time between when the tether line is completely unreeled and when the lead
projectile impacts the target. After the lead projectile hits the target and stops moving, the
follower projectile and the tether line continue their motion toward the target. A cartoon of the

first four flight phases is provided in Figure 2.

6. Results

In order to exercise the dynamic model previously described, simulation results for an
example system are shown. The baseline lead projectile is a 2,000 Ib, fin-stabilized projectile.
The tether line is 1,000 ft long with a total weight of approximately 3 1b. The reel stiffness

coefficient is 0.1, and the reel damping is 1.0. It is assumed that the lead projectile is




(a) Initial Configuration

(b) Deployment Configuration

(c) Fully Deployed Configuration

(d) Terminal Configuration )

Figure 2. Deployment Schematic.
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mounted on the parent aircraft such that the body axes of the aircraft and the lead projectile are
aligned. The lead projectile is deployed from the parent aircraft that is flying straight and level at
a speed of 500 ft/s. The effect of munition release on the lead projectile is to impart an initial
vertical velocity of 10 ft/s downward on the lead projectile. All other initial conditions are zero.

The lead and follower projectiles are separated at T =0 s.

Figure 3 plots the range of the lead and follower projectiles for a follower-to-lead mass ratio
of 1% and 100%. The 100% mass ratio case has a slightly greater range because the projectiles
separate more slowly and reel resistance is reduced. For a given mass ratio, both the lead and
follower projectiles follow similar trajectories. The total flight time is approximately 40 s.
Figures 4 and 6 show the pitch attitude and pitch rate for the same conditions as Figure 3. The
pitch angle of both projectiles follows the same trends of decreasing from a level attitude to
below 70° nose down at impact. The lead projectile oscillates at a frequency of 1/7 cycles per
second. Figure 5 shows the forward body velocity of the lead and follower projectiles for a mass
ratio of 1% and 100%. The lowest trace with oscillations at T = 22 s is the follower projectile for
a mass ratio of 1%. The lead projectile is the middle trace at T =30 s. The lead projectile tends
to increase in speed more than the follower projectile. The follower projectile does not slow
down because as the tether line pays out, the resistance force in the tether reel tends to pull the
follower projectile with the lead projectile. At about 22 s into flight, the tether line is fully
deployed, and the lead projectile “snatches” the follower projectile and sharply increases its
speed. The elastic nature of the tether line increases the speed of the follower projectile such that

it is greater than the lead projectile.

At the first peak in the follower projectile velocity time trace, the tether line goes slack and
no force is transmitted along the tether line. At this point, the follower projectile is essentially
uncoupled from both the lead projectile and the tether line. For this reason, the follower
projectile begins to slow down to its uncoupled steady state drop velocity. The follower
projectile continues to slow down until approximately 22.7 s into flight, when the lead projectile

“snatches” the follower projectile again and rapidly increases its speed. This sequence continues

11
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for six cycles, and then the lead and follower projectiles enter a steady state condition. At
t=42 s, the lead projectile impacts the ground and obviously stops moving. The tether line
rapidly goes slack and again the follower projectile speed slows as it seeks to attain steady state
drop velocity. Notice for this mass ratio, the lead projectile is essentially unaffected by the
follower projectile and the tether. At T =30 s, the lower trace is the follower projectile, and the
upper trace is the lead projectile for a mass ratio of 100%. Notice for this mass ratio, the line
takes longer to deploy due to the similar dynamic characteristics of both bodies, and significant
interaction between the lead and follower projectiles exists. The plot representing the angle of

attack vs. time (Figure 7) shows that the angle of attack remains small for both the lead and
follower projectiles.

F-N

Angle of Attack (rad)

N w
IE—
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L
L IV W |
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Figure 7. Angle of Attack (Lead/Follower, Mass Ratio = 1%, 100%).

For a mass ratio of 100%, Figures 8—12 show parametric trends on the response of the system
to different drag coefficient ratios between the lead and follower projectiles. The range and pitch
attitude characteristics are similar for all drag ratios considered. However, the lead and follower

forward velocity time histories show a predictable speed reduction as the drag ratio is increased

14
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1.5, 1.75, 2).
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Figure 12. Tether Line Out Rate (Mass Ratio = 100%, Drag Coefficient Ratio = 1.25, 1.5,
1.75, 2).

because higher drag ratios pay out the line more rapidly and increase the lead projectile

resistance.

For a mass ratio of 1%, Figures 13—19 show parametric trends on the response of the system
to different drag coefficient ratios between the lead and follower projectiles. As in the previous
case, the lead and follower forward velocity time histories show a predictable speed reduction as
the drag ratio is increased. However, the basic shape of the curve shows an oscillation induced

by the snatch load.
7. Conclusions

A dynamic model has been developed for the flight mechanics of two projectiles connected
by a flexible tether. Both projectiles are individually modeled with six degrees of freedom. The

projectile aerodynamic model depends on the attack angle and Mach number, and includes high
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angle of attack terms as well as unsteady roll, pitch, and yaw aerodynamic damping. The tether
is split into a finite number of beads, with each bead containing three translational degrees of
freedom. Forces acting on the beads include weight, line stiffness, line damping, and
aerodynamic drag. The tether acrodynamic drag force is dependent on the tether line angle of
attack and Mach number. The tether line pay-out process is modeled with a single degree of
freedom and allows for a resistive damping and stiffness force to resist tether line pay out. For
follower projectiles relatively low in weight, the lead projectile motion is uncoupled. An
oscillation in the forward velocity of the follower projectile is induced at the point where the
tether line is completely deployed. However, for lead and follower projectile configurations with

similar mass, lead projectile motion is coupled to the tether and follower projectile.
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Components of the center-of-mass position vector of the lead projectile

expressed in the inertial reference frame
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expressed in the inertial reference frame

Components of the inertial position vector of the ith tether bead

Euler roll, pitch, and yaw angles of the lead projectile

Euler roll, pitch, and yaw angles of the follower projectile

Translation velocity components of the center of mass of the lead projectile

resolved in the lead projectile body reference frame
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projectile resolved in the follower projectile body reference frame
Components of the angular velocity vector of the lead projectile expressed in

the lead projectile body reference frame
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External forces on the lead projectile expressed in the lead projectile body

axes
External forces on the follower projectile expressed in the follower projectile

body axes
External moments on the lead projectile expressed in the lead projectile body

axes
External moments on the follower projectile expressed in the follower
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Lead projectile mass
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Mass moment of inertia matrix of the lead projectile
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" Tether line stiffness

Tether line damping
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Local aerodynamic velocity in the direction of a tether bead
Skin friction drag coefficient of the tether line

Flat plate drag coefficient of the tether line

Tether line pay-out length

Tether reel mass

Poisson’s ratio of the tether line material
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